The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X X X X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 X X X 0 X 0 X X X 0 X X X 0 X 0 X X X X X 0 0 0 0 0 X X 0 0 X 0 0 0 0 0 0 0 X X X X X X X X X 0 X X 0 0 X X X X 0 0 0 0 0 0 0 0 0 0 0 0 X X X X X X X X X X 0 0 X X 0 0 X X X X 0 0 0 0 0 0 0 0 X X 0 0 0 0 X 0 0 0 X X X X X 0 X X 0 0 0 0 0 0 0 0 0 X X X X X X X X 0 0 0 0 X X X X X X X 0 0 0 X 0 0 X X 0 0 X X 0 0 X 0 X X X 0 0 0 0 0 X X 0 0 0 0 0 0 X 0 X X X 0 0 0 0 X X X X 0 0 0 X X X X X X 0 0 0 0 X X 0 0 X X X X 0 0 0 0 X 0 0 X X X X X 0 X X 0 X X 0 X 0 0 0 X 0 0 0 0 X X 0 0 0 0 0 0 0 0 X X 0 X X 0 X X X 0 0 X 0 X X X 0 0 X 0 X X 0 0 X X 0 0 X X 0 0 X X 0 0 X X 0 X X 0 0 0 0 0 0 X X 0 X X X 0 0 X X X 0 0 X X 0 0 0 0 generates a code of length 71 over Z2[X]/(X^2) who´s minimum homogenous weight is 68. Homogenous weight enumerator: w(x)=1x^0+21x^68+32x^70+67x^72+6x^76+1x^140 The gray image is a linear code over GF(2) with n=142, k=7 and d=68. This code was found by Heurico 1.16 in 0.092 seconds.